@) elastic

Kibana Ul:

Under the Hood

CJ Cenizal
Ul Engineer

Hey everyone, I’'m CJ. This talk is about the Ul development process on the Kibana team.

Hi, 'm CJ.

Been at Elastic for 9 months.
| love building user interfaces!

Let me start out by sharing a little bit about myself. Been with Elastic for 9 months. I'm a Ul Engineer on the Kibana team. | come from a design background. | studied
Design in college.

After graduating | started building websites in Flash and when Steve Jobs killed Flash | moved on to JS web app development. | quickly realized that | love building user
interfaces and making usable software. Now I’'m on the Kibana team and my focus is on making our user experience better.

How’s the
sausage made?

Let’s talk about the process,
and how this affects you.

Most of our meetups involve showing off our tech, talking about how you can use it as a consumer. This talk is a little more geared towards people who write Kibana
code, either as plugin developers or open source contributors. It’s more of a tour behind the scenes, so even if you don’t fall into one of these categories, you might find
it interesting to learn how we work on Kibana and where the product is headed from a Ul and UX standpoint.

| have a feeling this presentation will go by quickly so please keep track of any questions you have and ask them at the end, and | can go back and dive into detail on any
points you’re curious about.

404

UI:-Not Found

Kibana1 & 2

| couldn’t find any screenshots of Kibana 1 or 2.

Kibana 3

¢ o elastic

Kibana 3 was entirely focused on Dashboards. The simplicity of the product allowed the Ul to also be very simple. Very minimal Kibana chrome around the content.

Kibana 4

,x o /x| Hoadn . P
Top20_typesQ Counts x
o o
4 — VAN N - ?
Rittman Mead ODI Monitoring

~ rmoff 20150309

e I
\ - ‘
S x
Top 5 SESS NAWE £ Q Count+ Sumof SESS.DUR & 501h porcentio of SESS.DUR & 96t percentie ofsESs DURS
SDE_ORAR1213_ADAPTOR_SDE_ORA_SLAJOURNALFACT T e))
SDE_ORART213_ADAPTOR_SDE_ORA_ACGRUALTRANSACTIONFACT_EXTRACT ' 1 1 1 o e |a Stl C
6 SDE ORARI213 ADAPTOR_SDE ORA GLBALANGEFACT T e s s (]

With Kibana 4, we split this functionality apart into three apps: Discover, Visualize, and Dashboard. This explosive growth in functionality called for a new chrome which
could surface a new navigation scheme. We added navigation buttons at the top of the screen to let people navigate to the new apps.

Kibana 5

(= O)
, ~ L. W N -
CIENCN LN =
New Add Save Open

are Options Reporting @ Last 10y rounded to the year ~

[]|

Earthquake - Title

@ World's Earthquakes

Hot Areas

Catalogues

© Loma Prieta, 1989 (Wikipedia)
o Aczmit, 1999 (Wikipedia)

o Sumatra, 2004, 2005 (Wikipedia)
© Hait, 2010 (Wikipedia)

© Tohoku, 2011 (Wikipedia)

Quarries and Nuclear Blasts

losion at Texas, USA, 2008 (NBC

Go back to the world map or compare with the worid
Earthquake - Count

7.9 42.5 12,543

Max Magnitudes ‘Average Depth (km)

@ elastic

<

We continued in this vein and added a ton of new apps to Kibana and we also introduced X-Pack. There wasn’t enough space to keep adding these navigation buttons at
the top of the screen, so we re-thought the chrome and moved the primary navigation into a side bar on the left side of the screen.

Classic web
development

IS an assembly
line.

So that’s how Kibana has changed over time. Now | want to step away from Kibana for a second and talk about a classic problem with web development.

It’s a linear and literal process

Designer hands off Engineer implements Rinse & repeat for
mockup for a screen the single screen additional screens

9 %@ elastic

Typical web design and development is a very linear process. A designer designs a series of mockups and hands them off to the developers. The developers implement
the mockups, page by page.

A designer hands off mockups.

10 %9 elastic

Here’s what a designer might hand off. This is a mockup of Kibana 6. Just kidding. But this is what you get right? Side bar, a grid of thumbnails. Another mockup. Side
bar, a form. And what happens next? The developers code it up. They get these mockups and build what they see, page by page.

tightlyCoupledWebApp
formPage

formPage.css
formPage.html
formPage.js
_And a developer thumbnailGridPage
Implements them, thumbnailGridPage.css

|itera"y_ thumbnailGridPage.html

thumbnailGridPage.js
The code becomes tightly-
coupled with the mockup.

You end up with code that corresponds clearly to the individual mockups that the designer created. But when you have code that corresponds very concretely to a

designer’s mockups, the code becomes very tightly-coupled with those designs. The tight coupling creates a brittle relationship. The code isn’t written to anticipate
change; it’s written as if the designs are static. So when the design changes, you end up needing to completely rewrite a lot of existing Ul code.

But Ul code
is still just code!

Why not apply the same best
practices?

This problem isn’t unique to Ul code though. It’s the same thing for all code. When you write code that’s tightly-coupled, you end up with a spaghetti codebase. It’s
difficult to reason about, difficult to follow, difficult to change. Unclear logic flow, brittle relationships.

So how do we avoid this? With modular code. By creating useful abstractions. By designing ergonomic interfaces. We can write Ul code the same way.

Change is the only constant

in life.

Heraclitus, Greek philosopher

Kibana 5 codebase has some technical debt. A lot of the code was originally written in a way that was tightly-coupled to the Ul design. And so it’s been difficult to
change.

Kibana is a massive app, and you can see how much it’s grown over the past 3 versions. Looking ahead, we know we can expect it to continue to grow. We’ll need to
add more apps, the chrome may change significantly, and plugins need significant support (mix and match Ul without being tightly coupled to business logic, e.g. time

picker). People also want customizability / skinnability.

So it’s important we build it in a way that scales. We need to reduce technical debt. We need to anticipate growth. We need to anticipate change.

Moving forward

Components

Formalize how we think Solve the most intractable Tools which support
about the Ul part of Ul development component-based design

elastic

Va
%

14

Need a source of truth from which the entire UX derives, so we can make changes in one place and have them ripple throughout the system. We’re formalizing the way
we think about Ul design in terms of components. What’s the worst part of building a UI? Writing CSS. We’re writing better CSS that’s simple and reliable. We’re also
migrating from Angular to React and starting to build React components.

A non-linear, interpretative process

Designers break Engineers create a Engineers use

mockups apart into component library components to
components implement mockups
15 %9 elastic

Our new process affects how we think about Ul, gives us a consistent design language, and applies engineering best practices to the Ul code. When we look at a
mockup, we think about individual Ul components, not about entire designs. These components are modules. We write code that encapsulates the details of each
module. We think in terms of composition of smaller, simple components into larger, complex components.

The “componentization” process

16 %9 elastic

Componentization is the process of breaking apart bespoke user interfaces into generalized Ul components.
Going back to our earlier example, here’s how we would apply the component-based way of thinking to our designs. We’d take a look at these designs and instead of
implementing them in a concrete way...

Building a component library

17 ¢ o elastic

...we’d break them up into the components which comprise them. Page header, column text, table. And then we’d use these components to implement the mockups.

FOLDERS
componentLibraryWebApp
components
form

form.html

form.js
grid J

Components arid.heml
grid.js

form a shared pagination
VocabUIary_ pagination.html

pagination.js
sideBar
sideBar.html
sideBar.js
formPage
formPage.html
formPage.js
thumbnailGridPage

Designers, engineers, and
product people can all use it.

The result is a library of components that can be used over and over to build new mockups.

Components have both a visual representation and a representation in the code, and they’re both identified by the same name. This lets us talk about Ul with a common

language. Now, whenever a designer, engineer, or product manager refers to a “PageHeader” or “TextColumn”, everybody else in the conversation knows exactly what
they’re talking about.

elastic / kibana (o3

Code @ lssues 1,403 Pull requests 81 Projects 0 Wiki Puls|

Kibana cleanup: Ul

cjcenizal opened this issue on Jan 3 - 4 comments

r’i cjcenizal commented on Jan 3 « edited

Overview

T - -
h I s ro ce s s I s « We're going to componentize as much of Kibana's Ul as possible.

J « The Ul Framework will be our single source of truth for our Ul and our components.
weII, d Process.

« At first these will just be CSS components, but eventually they'll be JS components.

We'll also build Ul systems, e.g. sidebars, header / top nav, timepicker, search bar, modals,
notifications.

For an example of where our Ul Framework is headed in the long-term, check out the Smag
This is a React Ul framework | built at my last job.

Roadmap

Componentization and the Ul Framework

What's componentization?

Componentization is the process of breaking apart bespoke user interfaces into generalize

This is an ongoing process. We have an issue open on the Kibana GitHub repo to track progress if you’re interested in following this process or if you want to help us out.

We’re writing scalable CSS

We use CSS classes to make markup readable
We focus on making the effects of CSS explicit

We use the BEM naming convention

%@ elastic

A huge problem with CSS is trying to read the markup and imagine how it will look when rendered in the browser. Most of us know what a button element generally does,
but what if you have 5 different types of button in your app? Using CSS classes, we can give buttons descriptive names that we understand. Just like in code, naming
things well makes a big difference.

Another big problem with CSS is figuring out which styles apply to which parts of the markup. This is because some CSS styles can be inherited, which can result in

unexpected side effects in your Ul. To avoid these surprises, we try to make our CSS as explicit as possible, and avoid relying on inherited styles. We also use the BEM
naming convention to name classes with consistent and understandable patterns.

o .
"‘E|a5tlc Products Cloud Services Customers Learn

Blog News Engin

Componentizing the Kibana Ul, Part 1: CSS

We’re sharing
what we learn on
our blog.

By CJ Cenizal

000

Here be CSS at scale

Tens of thousands of lines of CSS. Selectors nested eight levels deep. Override upon overridg
until... (gasp)... !important rears its ugly head! Some may cower and tremble at the very mq
but here on the Kibana team, we meet these foes head on, with bellyfuls of coffee and web i

ready.

I’ve written more about how we write CSS on our blog. Feel free to check it out to learn more. Or if you have any questions ask me at the end and I’ll be glad to go into
more detail.

We’re migrating
from Angular
to React.

It supports our
componentization process
really well.

22

Lastly, we’re also migrating from Angular to React. React encourages building small, simple components that can be put together to build more complex components.
Components have external dependencies, on things like callbacks and even injected logic and state. This will also help make our code easier to reason about and test.

= Kibana Ul Framework 6.0.0-alphat

Components Panel
Actionltem StatusText
Badge Table
Bar Tabs
Button ToggleButton
Card ToolBar
Column Typography
Event VerticalRhythm
The Kibana Ul
FormLayout Events
F ra m ewo rk . HeaderBar HeaderBar with Table
Icon Notice

InfoPanel View
Link
LocalNav

Our single source of truth for
components.

Menu
MenuButton
MicroButton
Modal

23

All of these components will live in a single Ul source of truth: the Ul Framework. This is our library of reusable components. An engineer using these components can
rest easy knowing that they are tested and demonstrated with interactive examples. Both internal engineers and external contributors can check it out and see what’s
available, and build user interfaces using these components.

Stronger,
faster,

easier,
more
consistent.

The Ul Framework means faster development for us. It also means OSS contributors will be able to write better code, more quickly, the same benefits we gain as team

members. Plugin developers: you’ll be able to pull components from the Ul Framework and build your plugins without having to custom-build the Ul. And all of this
means a more consistent Ul and UX for the end user.

The Ul Framework also creates some exciting possibilities:
- Dark theme throughout Kibana

- Easier to create custom “skins”

- Improved global accessibility

Thank you!

Check out our blog and repo.
Questions? Ask away!

26

So that’s a look at the Ul and UX challenges we face on the Kibana team and how we’re solving them. More information is available online on our blog and the Kibana
repo on GitHub.
Any questions about anything?

